This page is READONLY. It is generated from the old site.
All timestamps are relative to 2013 (when this page is generated).
If you are looking for TeX support, please go to VietTUG.org
All timestamps are relative to 2013 (when this page is generated).
If you are looking for TeX support, please go to VietTUG.org
Problem #828
Bất phương trình
Status:  Closed  Start Date:  19012011  

Priority:  Normal  Due date:  
Assigned to:  tanphu  % Done: 
100% 

Category:  Bất phương trình  
Target version:    
Votes:  0/0 
Description
giải bpt sau:
1/(x+5)+1/(2x5)<1/(x4)+1/(2x+4)
History
Updated by tanphu about 2 years ago
\(\dfrac{1}{x+5}+\dfrac{1}{2x5} \(\Leftrightarrow \dfrac{3x}{(x+5)(2x5)}\(\Leftrightarrow 3x\left[\dfrac{1}{(x+5)(2x5)}\dfrac{1}{(x4)(2x+4)}\right] <0 \)
\(\Leftrightarrow \dfrac{3x(9x+9)}{(x+5)(2x5)(x4)(2x+4)}<0\)
Lập bảng xét dấu vế trái và cuối cùng được tập nghiệm là:
\(S=(\infty;5) \cup (2;0) \cup (1;\frac{5}{2}) \cup (4;+\infty)\)
Updated by tanthinh about 2 years ago
tanthinh wrote:
giải bdt sau: 1/(x+5)+1/(2x5)<1/(x4)+1/(2x+4)
2/ (x^24x+1)^2>(x^2+2x+1)
Updated by tanphu over 1 year ago
 Subject changed from Bất đẳng thức to Bất phương trình
Updated by tanphu over 1 year ago
 Project changed from Tấn Thịnh to Math Learning
Updated by tanphu over 1 year ago
 Category set to Bất phương trình
 Status changed from New to Closed
 Assigned to set to tanphu
 % Done changed from 0 to 100